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Direct and Inverse Resonance Problems for
Shielded Composite Objects Treated by
Means of the Null-Field Method

WENXIN ZHENG

Abstract —Resonances of a composite object shielded by a perfect
conductor are investigated using the null-field method. Computed reso-
nance frequencies and quality factors of shielded homogeneous and com-
posite resonators are reported and compared with previously published
results whenever possible. Conversely, in the inverse sense, the permittivi-
ties and geometric parameters of shielded composite objects are computed
from calculated or measured complex frequencies.

1. INTRODUCTION

HE RESONANCE frequencies and the quality factors

of various modes of an open composite object, such as
a dielectric /ferrite ring or a double dielectric disk, can be
computed accurately by means of the null-field method [1].
However, in an actual microwave circuit, a dielectric res-
onator is rarely used without a metallic housing to obtain a
higher Q factor and reduce its radiation interference. In
the present paper, a study of metallic shielded composite
objects by means of the null-field method is reported.

The electromagnetic resonances of a metallic shielded
dielectric object with a specific geometry have been studied
by many authors. For instance, a dielectric sphere shiclded
by a concentric metallic sphere has been analyzed using a
rigorous analysis method [2]. One or several dielectric
cylindrical rods or rings shielded by a coaxial cylindrical
housing have been mvestigated using various mode-match-
ing techniques [3]-[5]. A surface integral technique based
on the method of moments [6] has been used to evaluate a
shielded dielectric resonator. The merits and shortcomings
of most of these methods are described and compared in
[3].

The null-field method has been used to study a variety
of exterior problems (see e.g. [1] and references given
therein). It has also been applied to several interior prob-
lems, such as the resonances in electromagnetic absorption
by lossy dielectric objects [7], the transmission and reflec-
tion of waves by an obstacle inside a waveguide [8], and
passbands and stopbands for a waveguide with arbitrary
cross section [9] or with a corrugated wall [10]. In this
paper, the null-field formulation for shielded objects is
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Fig. 1. Geometry and notations of a metallic shielded composite perme-

able object consisting of three homogeneous parts.

derived in Section II. Computed resonance frequencies of
shielded objects and @ factors for lossy materials are
reported in Section III and compared with other published
results whenever possible. In Section IV, the method is
used to solve the corresponding inverse problem, e.g., to
find the complex permittivities, permeabilities, and /or ge-
ometric parameters from known (measured) resonance fre-
quencies and Q factors. Section V gives some general
concluding remarks.

1I. FORMULATION

We consider the general case of a shielded object con-
sisting of a perfectly conducting shield enclosing a com-
posite object. The composite object could consist of a
number of obstacles as described in [11], could comprise
several homogeneous parts forming a chainlike structure as
discussed in [12] and [13], or could comprise layerlike
inhomogeneities as in [1] and [14] (an example of a shielded
object with three homogeneous parts is given in Fig. 1).
We assume that an origin O can be chosen inside the
composite object and that a finite sum of the vector
spherical waves or vector spherical harmonics defined with
respect to this origin can be used to approximate the
unknown surface fields. We also assume that the annular
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region between the shield and the object, denoted by ¥V, is
filled with a homogeneous material, and that the electro-
magnetic properties of the homogeneous material in each
region V), where j=0,1,---, M (we assume that the com-
posite object has M homogeneous parts), can be described
by a scalar relative permittivity ¢; and a scalar relative
permeability p,. The wavenumber k; in V, can then be
expressed In terms of a frequency f, as k,=kgfe,p, =
2wf0m /¢, where c is the speed of light in vacuum. If
the losses due to a nonvanishing conductivity and the
damping caused by the alternating polarization of the
material in the region V, are considered, the permittivity
can be expressed by a complex value in the form

0

€ —e +i
4 27ty

and the loss tangent can be defined as the ratio of the
imaginary part to the real part of €,: tand, =0, /(27f)),
where o, is the equivalent conductivity causing all the
losses in the material in the region V). The time factor is
e,

In the following we denote the inner surface of the
shield by S, a bounding surface of the whole composite
object by S,, and the outward unit normal on the surfaces
by 7 with a corresponding subscript. We assume that S,
and S, are disjoint, but we do not rule out cases where
points on S, can approach points on S, as close as we
please. The electric field in V is denoted by E0

We assume that the sources are located in the annular
region V,. Let R, denote the radius of a circumscribed
sphere of S, with its center at O. Similarly, let r, denote
the radius of an inscribed sphere of S,, with center at O.
Thus, the incident field £ o excited by the sources can be
expanded in terms of regular spherical waves, Rex[/ (k7),
inside the sphere with the radius r,, and in terms of
outgoing spherical waves, x[/,,(kr), outside the sphere with
the radius R, respectively, as follows:

E™(7) = Xa,Re ¥, (ko?), 1

7l <r,

E™(F) = Y b, (koF FI>R,. (2
n

The definitions of the regular and outgoing spherical waves

can be found in [1]. An abbreviated multi-index notation

n=(r,0,m,l) with
r=1,2 o=e,o (“even” or “odd”)
"m=0,1,---,1 1=1,2,---

has been used (cf. [1]). The expansion (1) is valid inside
any sphere with center at O which does not contain any of
the sources of E™ The expansion (2) is valid outside any
sphere with center at O which encloses all of the sources
of E™ We apply the null part of Green’s second theorem
twice to the region ¥, by first considering |7| < r, and then
|7] > R,, respectively. Thus two equations are obtained on
the bounding surfaces of the annular region, S, and S,, in
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the form

a,= —ikofss_so[v’x 9, (ko) (A X Ey)+ ¥, (ko)
(ax(v'x Ey))] ds' (3)

ko) (7 X Ey)

+Re ¥, (ko) (ﬁ X(v’x EO))] as’. (4)

The boundary condition for the electric field on the per-
fectly conducting surface S, is

—ikofs~

[V’XRe 47,,(
So

(5)
We can approximate the magnetic surface field on S, by

using a series of regular spherical waves and a set of |
unknown coefficients {«,,} [15] as follows:

7 onS,.

)] (6)

Different procedures for obtaining the matrices which
characterize the composite object bounded by S, can be
adopted for the different geometric structures mentioned
in the beginning of this section. Independent of the proce-
dure that is uvsed, after introducing the boundary condi-
tions and expanding the surface fields (cf., e.g., {11]-[15]),
one always arrives at the matrix equations (with = {a,},
0=1{0,,} etc) of the following form:

7=i[0s(¥)a- 0.(¥)F]
b=i[0g(Rey)d—0(Re¥)A]

where the elements of Qg are defined by

049, = ko (ki)

X (v X Ey(7)) = g‘,a [n X(v XRey/(k

(7)
(8)

[v'xRed, (ko')]-4,dS".

©)

However, the form of the Q, matrices for the composite
dielectric/ferrite resonator and the meaning of the set of
the unknown coefficients, B, depend on the particular
null-field approach used for the composite object bounded
by S,. The procedure suggested in [1] has been found
flexible and suitable to most of the resonance problems
treated in this paper. The sequence of truncations that will
be considered on the right-hand side of (6), and in the
following matrix relations, is determined by a sequence of
values [, , where for each [ _,, one considers all 1</ ,.;
m=0,1,---,I; 7=1,2; and o =e,0. For a given [, the
number of terms on the right-hand side of (6) is N=
2L T DX o

Smce the resonances of a linear system correspond to
the eigensolutions of the related homogeneous system, i.e.,
the solution of the linear equations without any excitation,
(7) and (8) can be used to solve the resonance problem by
setting &= 0 and b=10. After cbvious calculation, one
finds that, in order to have nontrivial solutions, the deter-
minant of the following matrix representation must vanish,
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namely,

det{Qs(Re¥)[05(¥)] Qu(¥)— Qu(Re?)) =

(10)

We remember that the zeros of det[Q (Re Jf)] represent
the resonances of the empty metallic cavity (cf., e.g., [16]),
while zeros of det[Q R(;p)] represent the resonances of the
open composite object (cf. [1]). From (10) it is seen that
the resonances of the shielded object will in general be
different from the resonances of the shield and of the
object itself, respectively. Therefore, we can rewrite (10)
and search for the zeros of the shielded object according to
the following equation:

det(R) =det|[T,— T,] =0 (11)

where Tg = — Q¢(Re z,U)[QS(x,U)]_1 is the transition matrix
of the corresponding perfectly conducting shield, while
Tp=— Qx(Re ) Qx($)] ! is the transition matrix of the
corresponding open composite object (cf., e.g., [15]). We
should mention here that (11) is only written for the
analysis below, while (10) should be used to calculate the
zeros; this is because the zeros of (11) comprise a subset of
the zeros of (10). The sets differ by the intersection of the
zeros of det[Q R(zlz)] = 0 and the zeros of (10). However, so
far we have never encountered any point in the intersec-
tion in our numerical calculations. Because the transition
matrices, Ty and Ty, are symmetric complex matrices [15],
the N X N matrix R is symmetric and thus it can always
be diagonalized by a unitary matrix U in the form R =
UAUT [17], where UT is the transpose of U, and A is a
real nonnegative diagonal matrix, A =diag(A, A, -,
A ). Thus a zero of (11) must satisfy at least one of the
following system of equations of the singular values of the
R matrix:

}\l(kO) = 0’

The form of this equation depends on the electromagnetic
parameters and geometric shape of the resonator. Let { P}
denote a set of electromagnetic parameters €/, u , and o,
j=0,1,---, M. Similarly, one often considers, e.g., a speci-
fied class of geometric objects, which can be characterized
by a set of geometrical parameters {G } (with its elements
consisting of the length and radius of a pillbox, two
half-axes of an ellipsoid, etc.). For such a situation we may
indicate the dependence of A, on {G) and (P} explicitly
as follows:

A({ko}: {G}.{P})=0, N. (12)

We note that each equation in the system (12) has an
infinite number of roots, and that each root in each
equation represents a particular resonant mode. We also
note that these roots are, in general, complex numbers,
although the singular values, A,, i =1,2,-- -, N, are all real.
In the direct problem, the sets {G} and { P} are known
and one searches for a set of roots of (12), {k,}, in the
complex plane, ie., the resonance frequencies and the
quality factors (for lossy materials). Alternatively, one can

i=1,2,---,N

i=1,2,---,
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also use the same equations and the same procedures to
solve an inverse problem within, e.g., specified classes of
geometries from measured natural frequencies; i.e., from a
set of known {k,} one searches for a finite set of un-
knowns in {G} and/or { P} using a suitable optimization
method. Of course, the solution is not unique since there
are infinitely many roots to the equations. But in many
situations, the “desired” root can be distinguished using
prior knowledge when the number of the unknowns is not
too large. The numerical method employed in this paper to
find the roots for both direct and inverse problems is the
secant method. Some numerical examples of direct and
inverse problems are given in Sections III and IV, respec-
tively.

III. NuMmeRriCAL RESULTS FOR DIRECT PROBLEMS

For general three-dimensional shielded objects, the Q
and T matrices obtained in the previous section are full
matrices. However, for some special geometries simplifica-
tions occur. As discussed in [1], the @ matrices for an
axisymmetric shielded object have only diagonal blocks
(with m =m") different from zero, which correspond to
different azimuthal dependences of the resonant fields.
Furthermore, for a concentric layered dielectric sphere
with a concentric spherical shield, choosing the geometric
center as the origin, one obtains diagonal matrices which
have explicit analytic expressions for the diagonal elements
of the T [11] and Ty [18] matrices. In practice, all the
computations are repeated with increasing matrix size (cor-
responding to increasing consecutive [/, values) until a
specific convergence requirement is met. However, for the
case of a layered concentric spherical structure, the zeros
of (10) or (12) do not depend upon the matrix size.

To verify the method developed in the preceding section,
the resonance frequencies and the Q factors are computed
and compared with published results [2] for a lossy spheri-
cal dielectric resonator shielded by a concentric sphere
(SSS). The loss tangent of the material is tan = £, /40000.
The curves shown in Fig. 2 are all calculated using two
positions of the origin, d =0 and d = a /2, respectively,
where d is the distance between the geometric center and
the origin chosen. When the off-center origin is used the
matrices are no longer diagonal and the zeros depend on
the matrix size. Comparison of the results obtained for a
d=0 and a d# 0 case provides a check on the computer
codes. The results for d =0 and d = a /2 agree for at least
the first five digits (i.e., on the scale of Fig. 2 the results
overlap completely). In the present paper, we always as-
sume that the shield is a perfect conductor. Thus, only the
dielectric quality factors, Q,, are reported in the results of
this paper. From Fig. 2 and [2] one can see that the Q,
dominates the unloaded @ factor when the resonance
frequency of a certain mode is close to that of the corre-
sponding open resonator (flatter parts of the curves of the
resonance frequencies, as shown in Fig. 2(a)). In the lay-
ered concentric spherical structure, there exist only trans-
verse electric (TE) and transverse magnetic (TM) modes.
Three subscripts, mlp, have been used to distinguish the
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Fig. 2. Mode chart of lossy dielectric sphere shielded by-a concentric
metallic sphere (SSS). The various lines are computed using the present
method for perfectly conducting shield while markers represent results
reported in [2], in which loss of the shield has been taken into account.
(a) Resonance frequencies. (b) Quality factors.

modes in the same class, where m and / appeared above in
the multi-index n, while p refers to the pth root. For this
spherical structure both the present method and that of {2]
can be regarded as exact methods. Very good agreement is
found except for the TM,; mode. As for the TM,; mode,
we have confidence in our results since the resonance
frequency of this mode at 5 =10 mm from our calculation
(f, =18.47869) is much closer to that of the empty metallic
cavity (the exact value for the empty cavity is f, =18.47903;
cf., e.g., [19]).

For a slightly more complicated geometry, such as the
eccentric spherical resonator and shield in Fig. 3 and most
of the following examples, the rigorous and numerical
methods based on standard separation-of-variables -tech-
niques can no longer be applied. The resonance properties
of an eccentrically mounted resonator which has the same
geometry and electromagnetic properties as that in Fig. 2
are illustrated in Fig. 3. Besides the TE and TM modes
observed in Fig. 2, the hybrid electromagnetic modes (H
modes) appear when 4 > 0. In this and following examples
without a concentric SSS structure, we use two subscripts,
ml, to designate the different modes in the same class. The
first index, m, refers to the azimuthal dependence of the
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Fig. 3. Mode chart of a lossy dielectric sphere shielded by an eccentric
perfectly conducting metallic sphere. (a) Resonance frequencies. (b)
Quality factors.

modes of axisymmetric bodies and the second, I, is the
order of the resonance frequency, /=1 being the lowest
resonance of the particular mode. This mode designation
scheme originates from [20] with a slight simplification
(since the object considered in Fig. 3 does not have the
symmetry plane perpendicular with the. symmetry axis,
which was used in [20]).

In Fig. 4, the resonance frequencies and Q, values are
plotted and compared for three different concentric ge-
ometries, i.e., sphere-shielded sphere (SSS), sphere-shielded
pillbox (SSP), and pillbox-shielded sphere (PSS). From this
figure one observes very similar effects for the three differ-
ent structures. There is at least one flatter part (“plateau”)
in every curve depicted in Fig. 4(a). In this part, the
frequency remains essentially independent of the size of
the shield and is very close to the resonance frequency of
the corresponding mode of the open resonator. The Q,
factor can be approximated by 1/tand and it is much
smaller than the quality factors of ordinary metallic cavi-
ties. On the two sides of the plateau, the resonance fre-
quency .and the quality factor variations follow those of
the dielectric-filled (left) and the empty (right) metallic
cavity, respectively, for the corresponding mode, as have
been observed for a cylinder-shielded pillbox [3] and a SSS
[2]. In Fig. 4 one can also find that the TE, and H;;
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Fig. 4. Comparison of the resonance frequencies and quality factors of
different modes between a sphere-shielded sphere (SSS), a sphere-
shielded pillbox (SSP), and a pillbox-shielded sphere (PSS). (a) Reso-
nance frequencies. (b) Quality factors.

modes of the SSP and the TM, and H,, modes of the PSS
degenerate to one another, respectively, for almost the
entire range of the radius, b, of the shield. This is related
to the fact that special pillboxes (length equal to diameter)
are used in the two cases; it is not a general feature.

The composite object inside the shield need not be
permeable; it can contain one or several conducting parts
(cf. [11]-[15]). As an example, we consider the somewhat
unusual shielded object provided by the earth itself with
the ionosphere as the shield. We model the earth by a
perfectly conducting spheroid of equatorial radius 6378 km
and polar radius 6356 km. The ionosphere is modeled by a
concentric perfectly conducting spherical shield of radius
6500 km. The first eight resonance frequencies computed
using the null-field method are f,=10.83 (TMy,), 18.31
(TMy,), 20.54 (TE,), 25.80 (TMy;), 29.01 (TE,), 33.26
(TM,,), 37.28 (TE;), and 40.70 (TM;) Hz. The zeros of
the hybrid modes deviate very little from those of the TE
and TM modes. The shift is within 2 percent, because the
object is almost a sphere. From the observation of the
peaks in a typical noise power spectrum recorded at La-
vangsdalen, these Schumann resonances (cf. [21]) have
average linear frequencies of 8§, 14, 20.2, 25.7, 28.3, 32.5,
34, 37.3, and 41.7 Hz, respectively. The lack of precise

2.8 e o o Measured (L = 32.884mm)
el + % Measured (L = 40.613mm) -
2.6 T R T R Y T TN S Y N N S
0 1 2 3 4 5 6 7 8 9 10
' (a) d{mm)
Qq
;Ig: I="7.62mm I ]
il r = 8.636 mm ]
R=12.7mm R
110k co=1,6 =35.74 |
5 107 tané = fo/40000 ]

1-102
5.10?

2} Shielded (L = 32.884mm) ]
"'} Shielded (L = 40.613mm) ]

B e s vt s e e b Dot sl e e
5 6 7 8 9 10
) d(mm)

Fig. 5. Comparison of the resonance frequencies and the quality factors
of two of the TE modes between an open and two shielded lossy
dielectric double disks. The measured values are reported in [4]. (a)
Resonance frequencies. (b) Quality factors.

agreement, especially for the first two peaks, is not surpris-
ing, since the assumption of perfectly conducting walls is
very crude. However, the /(/+1) variation of the com-
puted resonance frequencies for each of the TE and TM
modes is quite striking.

A set of double dielectric pillbox structures, one open
case and two shielded cases with different sizes of the
shield, are considered and the resonance frequencies and Q
factors of the two lowest TE modes of each case are
computed and plotted in Fig. 5. Some measured results
from [4] have also been included in Fig. 5 for comparison.
The lower and the upper TE mode correspond to the TE
and the TE;,, mode, respectively, of a single pillbox
resonator (cf. [1]) for each case. The larger the separation
of the two pillboxes, the closer the resonance frequencies
of the two TE modes; thus the smaller the coupling
coefficient (cf., e.g., [4]) between the two resonators. For
the open case, the resonance frequencies of the two TE
modes approach the same limit as d increases, namely the
resonance frequency of the TE,; mode of a single pillbox
resonator. On the other hand, for the shielded cases, the
resonance frequencies increase again when the pillboxes
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TABLE 1
DIRECT AND INVERSE RESONANCE RESULTS FOR THE TEy;; MODE
OF A SPHERICAL RESONATOR CONCENTRICALLY SHIELDED BY A
METALLIC SPHERE AS SHOWN IN FIG. 2

Known Data of the TEg31 Mode Reconstructed Data
a (mm) b (mm) £ _fo (GHz) | Qq Errors Computed Results Errors
0.72 4.0 36-+10.03056 —_ —_ — fu=33.958298, Qd=1256.18 —
— 4.0 36+i0.03056 33.96 1260 |0.005% |a=0.71996 0.005 %
— 4.0 36+4i0.03056 34.3 1270 1% | a=0.7126 1%
0.72 - 36+30.03056 33.96 1260 | 0.005% | b=3.993 0.18 %
0.72 — 36+i10.03056 34.3 1270 1% | b=2.798 30 %
0.72 4.0 — 33.96 1260 | 0.005% | €£1=35.996+i0.03047 0.03 %
0.72 4.0 — 34.3 1270 1% | €1=35.239+i0.02965 3%
TABLE II
DirecT AND INVERSE RESONANCE RESULTS FOR THE TM;; MoODE
OF A SPHERICAL RESONATOR CONCENTRICALLY SHIELDED BY A
METALLIC SPHERE AS SHOWN IN F1G. 2
Known Data of the TMgp3; Mode Reconstructed Data

@ (mm) | b (mm) €1 fo (GHz)| Qg Errors Computed Results Errors
0.72 4.0 36-+i0.02847 —_ —_ — | fo=31.631401, (}4=137014. —
—_ 4.0 36+i0.02847 31.63 137000 |0.005% | a=0.72030 0.005 %
—_— 4.0 36-10.02847 32 140000 1% | a=0.6314 12.3 %
0.72 —_ 364i10.02847 31.63 137000 |0.005% | b=4.0002 0.005 %
0.72 — 36+10.02847 32 140000 1% | b=3.948 1.3 %
0.72 4.0 — 31.63 137000 | 0.005% |€1=36.3464i0.02866 6.95 %
0.72 4.0 — 31.6 140000 1% | £1=44.161+i0.02994 22 %

approach the ends of the shield and then form new pill-
boxes with double thickness together with their mirror
images in the perfectly conducting plane walls of the
shield. '

IV. RESULTS FOR INVERSE PROBLEMS

From (12) one can see that every object, open or shielded,
has its intrinsic complex resonance frequencies, known as
the natural frequencies, in the electromagnetic spectrum,
and that the location of these frequencies in the complex
plane depends upon {G} and { P}, i.e., its size, shape, and
internal structure. The identification of the object (includ-
ing its shield, if any) by the natural frequencies is one of
the branches in the area of the inverse problem which has
been the subject of intense research. Some practical appli-
cations have been carried out in this branch, such as the
measurement of dielectric properties of low-loss materials
[22], the determination of the moisture content in single
soybean seeds [23], and accurately sizing the diameter of
glass fiber [18]. The application of equations (10)—(12) to
the inverse problems can be classified as the singularity
expansion method (cf. [24]-[26]) in the frequency domain.
Since there are many methods available for accurate mea-
surement of the resonance frequencies and corresponding
Q values of shielded or open composite objects (cf., e.g.,
[3] and its references) or, alternatively, for extraction of the
natural frequencies from the transient scattered signal in
the time domain (cf., e.g., [27]), we only give examples of
using the known complex frequencies to determine the
physical characteristics of the objects.

We first consider the simplest case, a concentric SSS as
shown in Fig. 2. From those computed complex resonance

frequencies, we can reconstruct radii of the resonator, a,
and shield, b, the complex permittivity of the resonator, €,
etc., within any prescribed accuracy. However, no such
“clean” data can be obtained in any actual measurements.
The errors in the results reconstructed from measured data
can be estimated by a factor

L pe(eiu(r). (13)

If F, is found to be much bigger than unity, the computed
result is often not reliable since the errors from the mea-
surement have been magnified. Thus, it is important to
choose a set of suitable modes for a concrete problem from
which a relatively smaller F, can be achieved. In Tables 1
and II, reconstructed data for a concentric SSS are listed
for different parameters using the TEy; and the TM;
mode, respectively. From these tables one observes that
the TE;; mode is not very appropriate for the reconstruc-
tion of b at b=4 mm (F,_, = 34), while TMy,, (F,_,=1)
works very well (cf. also Fig. 2). A similar situation (some-
times TE;,; becomes a favorite mode) occurs when one
wants to reconstruct other parameters, such as ¢ and ¢,
for a known b.

A similar procedure can also be applied to an inverse
problem for an open object, for which the zeros are
searched for with det { @y} (cf. [1]) instead of (10). Taking
an open dielectric pillbox (# =525 mm, L =46 mm) as
an example, we list the computed permittivities in Table
III by using the measured resonance frequencies and Q
values due to radiation for four different modes reported
by Kajfez et al. [28]. The relative permittivity, €,, of the
material used is assumed to be 38. The average relative
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TABLE III
COMPUTED PERMITTIVITIES, €;, OF AN OPEN DIELECTRIC PILLBOX
WITH RADIUS r = 5.25 MM, LENGTH L = 4.6 MM, AND p; =1
FROM MEASURED RESONANCE FREQUENCIES AND Q
VaLUES DUE TO RADIATION

Measured Data [28] Computed Results
modes fo (GHz) Q €1 Errors
TEo15 4.85 51 38.178 0.47%
TMo1s 7.60 86 37.340 -1.74%
HEM25 6.64 64 38.246 0.65%
HEMa14 7.81 204 37.533 -1.23%
Average — — 37.824 -0.46%

The know ¢; of the material is 38.

error with respect to ¢, = 38 is 0.46 percent, which is very
close to the typical accuracy of measurement of the dielec-
tric constant (0.3 percent [3]), although the errors in the
measurement of the resonance frequencies and Q’s have
not yet been taken into account.

As a last example, we consider a peanutlike layered
dielectric object with a dry shell (¢; = 9) and a wet prolate
spheroidal core shielded by a concentrically placed cylin-
drical metallic cavity, as illustrated in Fig. 6. The permit-
tivity of the core, €,, can be expressed by a linear function
of the water content, ¢ (0 <c<1), in the core (cf., e.g.,
[29D):

(14)

€= €dry +(€water - edry)'c

where the permittivity of the dry core is chosen the same
as the shell (i.e., €4, =¢€;) and the dielectric constant of
water 15 €, ~ 79+ i25 [29]. The resonance frequencies
and Q, factors of the lowest TE mode were first computed
for various water contents, ¢ =0~ 20 percent, to obtain
“clean data.” To imitate the measured resonance frequen-
cies and Q values, two different levels of uniformly dis-
tributed pseudorandom noise, corresponding to relative
errors of 1 percent and 5 percent, respectively, were added
to the real and imaginary parts of the complex clean data.
From the corrupted data, the complex permittivities and
the corresponding water content of the core were recon-
structed. The reconstructed points in Fig. 6(a) are all on
the top of the curve of the clean data, as expected, since
the linear relation (14) has been used. The reconstructions,
shown in Fig. 6, are only an illustration of the possibilities
of the present method. For more realistic problems (de-
termination of the water content in a single seed, melting
hailstone, etc.), more accurate models of the relation be-
tween the water content and the permittivity and more
appropriate resonant modes have to be used.

V. CONCLUDING REMARKS

In the present article an approach within the general
framework of the null-field method to the direct and
inverse resonance problems of shielded composite objects
is suggested, and implemented numerically for axially sym-
metric structures. Good convergence and reasonable agree-
ment with other computed and measured results are
achieved for both direct and inverse resonance problems.
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Fig. 6. Clean and reconstructed data of a cylinder-shielded lossy
peanutlike object. The lossless shell of the object is bounded internally
by a spheroid and externally by the surface with a contour satisfying
r(8) = (af cos® § + b} sin?§)1/?, respectively. (a) Resonance frequen-
cies. (b) Permittivities.

Finally, we remark that in applications of the null-field
approach a basic criterion is that of stability of the results
(concerning, typically, surface-field expansion coefficients,
inverses of Q matrices, T matrix elements, zeros of det[Q],
etc.) as the truncation order (determined by /_ ) is in-
creased (cf., e.g., [1], [12]-[15)). Thus, the dependence of
the choice of [/, for all the quantities studied in the.
present paper has been investigated and has, in all the
examples presented, been found to satisfy predetermined
limitations. Illustrations of the typical convergence behav-
ior for similar problems can be found in [1, table I].
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