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Direct and Inverse Resonance Problems for
Shielded Composite Objects Treated by

Means of the Null-Field Method

WENXIN ZHENG

,&tract —Resonances of a composite object shielded by a perfect

conductor are investigated using the mall-field method. Computed reso-

nance frequencies and quality factors of shielded homogeneous and com-

posite resonators are reported and compared with previously published

results whenever possible. Conversely, in the inverse sense, the permittivi-

ties and geometric parameters of shielded composite objects are compnted

from calculated or measured complex frequencies.

I. INTRODUCTION

T

HE RESONANCE frequencies and the quality factors

of various modes of an open composite object, such as

a dielectric/ferrite ring or a double dielectric disk, can be

computed accurately by means of the null-field method [1].

However, in an actual microwave circuit, a dielectric res-

onator is rarely used without a metallic housing to obtain a

higher Q factor and reduce its radiation interference. In

the present paper, a study of metallic shielded composite

objects by means of the null-field method is reported.

The electromagnetic resonances of a metallic shielded

dielectric object with a specific geometry have been studied

by many authors. For instance, a dielectric sphere shielded

by a concentric metallic sphere has been analyzed using a

rigorous analysis method [2]. One or several dielectric

cylindrical rods or rings shielded by a coaxial cylindrical

housing have been investigated using various mode-match-

ing techniques [3]–[5]. A surface integral technique based

on the method of moments [6] has been used to evaluate a

shielded dielectric resonator. The merits and shortcomings

of most of these methods are described and compared in

[3].

The null-field method has been used to study a variety

of exterior problems (see e.g. [1] and references given

therein). It has also been applied to several interior prob-

lems, such as the resonances in electromagnetic absorption

by lossy dielectric objects [7], the transmission and reflec-

tion of waves by an obstacle inside a waveguide [8], and

passbands and stopbands for a waveguide with arbitrary

cross section [9] or with a corrugated wall [10]. In this

paper, the null-field formulation for shielded objects is
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Fig. 1. Geometry and notations of a metallic shielded composite perme-
able object consisting of three homogeneous parts.

derived in Section II. Computed resonance frequencies of

shielded objects and Q factors for Iossy materials are

reported in Section III and compared with other published

results whenever possible. In Section IV, the method is

used to solve the corresponding inverse problem, e.g., to

find the complex permittivities, permeabilities, and/or ge-

ometric parameters from known (measured) resonance fre-

quencies and Q factors. Section V gives some general

concluding remarks.

II. FORMULATION

We consider the general case of a shielded object con-

sisting of a perfectly conducting shield enclosing a com-

posite object. The composite object could consist of a
number of obstacles as described in [11], could comprise

several homogeneous parts forming a chainlike structure as

discussed in [12] and [13], or could comprise layerlike

inhomogeneities as in [1] and [14] (an example of a shielded

object with three homogeneous parts is given in Fig. 1).

We assume that an origin O can be chosen inside the

composite object and that a finite sum of the vector

spherical waves or vector spherical harmonics defined with

respect to this origin” can be used to approximate the

unknown surface fields. We also assume that the annular
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region between the shield and the object, denoted by VO, is the form

filled with a homogeneous material, and that the electro-

magnetic properties of the homogeneous material in each an=-ik.~ _~OIV’X~.(kOF’) O(fi X~O)+i.(kO~’)
regionVy,where J“= 0,1, <“ ., M (we assume that the com- ,

posite object has M homogeneous parts), can be described

by a scalar relative permittivity c, and a scalar relative “(’+’WI ‘s’(3)
permeability p~. The’ wavenumber’ kj in ~ can then be

b,= – iko
H

V’xRe~.(kOF’).(i?X~O)
expressed in terms of a frequency ~0 as kj = kofi = s, – s“

2~fO~/c, where c is the speed of light in vacuum. If

the losses due to a nonvanishing conductivity and the
-t Re~~(k07). (fi X(V’X Eo))] dS’. (4)

damping caused by the alternating polarization of the The boundary condition for the electric field on the per-

material in the region ~ are considered, the permittivity fectly conducting surface S, is

can be expressed by a complex value in the form
ii, x EO(7’) = o, 7’0n S,. (5)

n
‘J

6J= c; + z27rfo

and the loss tangent can be defined as the ratio of the

imaginary part to the real part of c,: tan 8, = CJJ/(2 ~foc; ),

where u] is the equivalent conductivity causing all the

losses in the material in the region ~. The time factor is
—Zute.

In the following we denote the inner surface of the

shield by S,, a bounding surface of the whole composite

object by SO, and the outward unit normal on the surfaces

by t? with a corresponding subscript. We assume that S,

and SO are disjoint, but we do not rule out cases where

points on SO can approach points on S, as ~lose as we

please. The electric field in VO @ denoted by EO.

We assume that the sources are located in the annular

region VO. Let R, denote the radius of a circumscribed

sphere of S,, with its center at O. Similarly, let rO denote

the radius of an inscribed sphere of SO, with center at O.

Thus, the incident field @ excited by the sources ~an be

expanded in terms of regular spherical waves, Re +.( k~),

inside the sphere with th~ radius rO, and in terms of

outgoing spherical waves, +.( k;), outside the sphere with

the radius R,, respectively, as follows:

n

n

The definitions of the regular and outgoing spherical waves

can be found in [1]. An abbreviated multi-index notation

n = (r, o, m, 1) with

‘T=1,2 u = e, ~ (“even” or “odd”)

m= O,l,. ... l 1=1,2,...

has been used (cf. [1]). The expansion (1) is valid inside

any sphere with center at O which does not contain any of

the sources of ~. The expansion (2) is valid outside any

sphere with center at O which encloses all of the sources

of @’. We apply the null part of Green’s second theorem

twice to the region V. by first considering 171< r. and then

13> R.j respectively. Thus two equations are obtained On
the bounding surfaces of the annular region, So and S,, in

We can approximate the magnetic surface field on S. by

using a series of regular spherical waves and a set of

unknown coefficients {a. } [15] as follows:

Different procedures for obtaining the matrices which

characterize the composite object bounded by So can be

adopted for the different geometric structures mentioned

in the beginning of this section. Independent of the proce-

dure that is used, after introducing the boundary condi-

tions and expanding the surface fields (cf., e.g., [11] -[15]),

one always arrives at the matrix equations (with ii’- {a.},

Q = { Qnn}, etc.) of the following form:

(7)ii’=i[Q.(J’)@- QR(j’)/?]

;= i [Q~(Re ~)~- Ql~(Re J)P] (8)

where the elements of Q~ are defined by

[Qs(@)]nn=ko~@.(ko~)x[V’XRe~.(ko7)] .fi,dS’.
s,

(9)

However, the form of the Q~ matrices for the composite

dielectric/ferrite resonator a~d the meaning of the set of

the unknown coefficients, ~, depend on the particular

null-field approach used for the cclmposite object bounded

by So. The procedure suggested in [1] has been found

flexible and suitable to most of the resonance problems

treated in this paper. The sequence of truncations that will

be considered on the right-hand side of (6), and in the

following matrix relations, is determined by a sequence of

values 1~=, where for each 1~= one considers all 1< l~=;
m=(),l,. . . , L 7 =1,2; and o = e,,o. For a given 1~= the

number of terms on the right-hand side of (6) is N =

2(lmm + 2) x lmm.
Since the resonances of a linear system correspond to

the eigensolutions of the related homogeneous system, i.e.,

the solution of the linear equations without any excitation,

(7) and (8) can be used to solve the resonance problem by

setting ii’= O and b = O. After clbvious calculation, one

finds that, in order to have nontrivial solutions, the deter-

minant of the following matrix representation must vanish,



1734 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 37, NO. 11, NOVEMBER 1989

namely,

d’t{Qs(Re~)[Qs( ~)]-lQ~(~) -QR(Re~)}=O.
(lo)

We remember that the zeros of det[Q~(Re ~)] represent

the resonances of the e~pty metallic cavity (cf., e.g., [16]),

while zeros of det [Q~( + )] represent the resonances of the

open composite object (cf. [1]). From (10) it is seen that

the resonances of the shielded object will in general be

different from the resonances of the shield and of the

object itself, respectively. Therefore, we can rewrite (10)

and search for the zeros of the shielded object according to

the following equation:

det(R)-det [T~– T~]=O (11)

where T~ = — Q~(Re ~)[ Q~( ~)] – 1 is the transition matrix

of the corresponding perfectly conducting shield, while

T~ = – Q~(Re ~)[Q~( ~)] -1 is the transition matrix of the

corresponding open composite object (cf., e.g., [15]). We

should mention here that (11) is only written for the

analysis below, while (10) should be used to calculate the

zeros; this is because the zeros of (11) comprise a subset of

the zeros of (10). ~he sets differ by the intersection of the

zeros of det [Q~( 0 )] = O and the zeros of (10). However, so
far we have never encountered any point in the intersec-

tion in our numerical calculations. Because the transition

matrices, T~ and T~, are symmetric complex matrices [15],

the N x N matrix R is symmetric and thus it can always

be diagonalized by a unitary matrix U in the form R =

UAU T [17], where UT is the transpose of U, and A is a

real nonnegative diagonal matrix, A = diag ( Al, A ~,. . . .

AN). Thus a zero of (11) must satisfy at least one of the

following system of equations of the singular values of the

R matrix:

A,(ko) = O, i=l,2,. ... N.

The form of this equation depends on the electromagnetic

parameters and geometric shape of the resonator. Let {P}

denote a set of electromagnetic parameters c;, p,, and a,,
j=o,l,. ... M. Similarly, one often considers, e.g., a speci-

fied class of geometric objects, which can be characterized

by a set of geometrical parameters {G} (with its elements

consisting of the length and radius of a pillbox, two

half-axes of an ellipsoid, etc.). For such a situation we may

indicate the dependence of A, on { G } and ( P } explicitly

as follows:

~,({k. };{ G}>{ P})=O, i=~,2,. ... N. (12)

We note that each equation in the system (12) has an

infinite number of roots, and that each root in each

equation represents a particular resonant mode. We also

note that these roots are, in general, complex numbers,

although the singular values, A,, i =1,2,. . . . N, are all real.

In the direct problem, the sets {G} and {P} are known

and one searches for a set of roots of (12), {k.}, in the

complex plane, i.e., the resonance frequencies and the

quality factors (for lossy materials). Alternatively, one can

also use the same equations and the same procedures to

solve an inverse problem within, e.g., specified classes of

geometries from measured natural frequencies; i.e., from a

set of known {k. } one searches for a finite set of un-

knowns in { G } and/or { P } using a suitable optimization

method. Of course, the solution is not unique since there

are infinitely many roots to the equations. But in many

situations, the “desired” root can be distinguished using

prior knowledge when the number of the unknowns is not

too large. The numerical method employed in this paper to

find the roots for both direct and inverse problems is the

secant method. Some numerical examples of direct and

inverse problems are given in Sections III and IV, respec-

tively.

111. NU~RICAL RESULTS FOR DIRECT PROBLEMS

For general three-dimensional shielded objects, the Q

and T matrices obtained in the previous section are full

matrices. However, for some special geometries simplifica-

tions occur. As discussed in [1], the Q matrices for an

axisymmetric shielded object have only diagonal blocks

(with m = m’) different from zero, which correspond to

different azimuthal dependence of the resonant fields.

Furthermore, for a concentric layered dielectric sphere

with a concentric spherical shield, choosing the geometric

center as the origin, one obtains diagonal matrices which

have explicit analytic expressions for the diagonal elements

of the T~ [11] and T~ [18] matrices. In practice, all the

computations are repeated with increasing matrix size (cor-

responding to increasing consecutive 1~= values) until a

specific convergence requirement is met. However, for the

case of a layered concentric spherical structure, the zeros

of (10) or (12) do not depend upon the matrix size.

To verify the method developed in the preceding section,

the resonance frequencies and the Q factors are computed

and compared with published results [2] for a lossy spheri-

cal dielectric resonator shielded by a concentric sphere

(SSS). The loss tangent of the material is tan8 = ~0/40000.

The curves shown in Fig. 2 are all calculated using two

positions of the origin, d = O and d = a/2, respectively,

where d is the distance between the geometric center and

the origin chosen. When the off-center origin is used the

matrices are no longer diagonal and the zeros depend on

the matrix size. Comparison of the results obtained for a

d = O and a d + O case provides a check on the computer

codes. The results for d = O and d = a/2 agree for at least

the first five digits (i.e., on the scale of Fig. 2 the results

overlap completely). In the present paper, we always as-

sume that the shield is a perfect conductor. Thus, only the

dielectric quality factors, Qd, are reported in the results of

this paper. From Fig. 2 and [2] one can see that the Qd

dominates the unloaded Q factor when the resonance

frequency of a certain mode is close to that of the corre-

sponding open resonator (flatter parts of the curves of the

resonance frequencies, as shown in Fig. 2(a)). In the lay-

ered concentric spherical structure, there exist only trans-

verse electric (TE) and transverse magnetic (TM) modes.

Three subscripts, m~, have been used to distinguish the
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Fig. 2. Mode chart of lossy dielectric sphere shielded by a concentric
metallic sphere (SSS). The various lines are computed using the present
method for perfectly conducting shield while markers represent results
reported in [2], in which loss of the shield has been taken into account.
(a) Resonance frequencies. (b) Quafity factors.

modes in the same class, where m and 1 appeared above in

the multi-index n, while p refers to the pth root. For this

spherical structure both the present method and that of [2]

can be regarded as exact methods. Very good agreement is

found except for the TM021 mode. As for the TM021 mode,

we have confidence in our results since the resonance

frequency of this mode at b =10 mm from our calculation

(~. = 18.47869) is much closer to that of the empty metallic

cavity (the exact value for the empty cavity is ~0 = 18.47903;

cf., e.g., [19]).

For a slightly more complicated geometry, such as the

eccentric spherical resonator and shield in Fig. 3 and most

of the following examples, the rigorous and numerical

methods based on standard separation-of-variables tech-

niques can no longer be applied. The resonance properties

of an eccentrically mounted resonator which has the same

geometry and electromagnetic properties as that in Fig. 2
are illustrated in Fig. 3. Besides the TE and TM modes

observed in Fig. 2, the hybrid electromagnetic modes (H

modes) appear when d >0. In this and following examples

without a concentric SSS structure, we use two subscripts,

ml, to designate the different modes in the same class. The

first index, m, refers to the azimuthal dependence of the
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Fig. 3. Mode chart of a lossy dielectric sphere shielded by an eccentric
perfectly conducting metallic sphere. (a) Resonance frequencies. (b)
Quality factors.

modes of axisymmetric bodies and the second, 1, is the

order of the resonance frequency, 1 = 1 being the lowest

resonance of the particular mode. This mode designation

scheme originates from [20] with! ,a slight simplification

(since the object considered in Fig. 3 does not have the

symmetry plane perpendicular with the symmetry axis,

which was used in [20]).

In Fig. 4, the resonance frequencies and Qd values are

plotted and compared for three different concentric ge-

ometries, i.e., sphere-shielded sphere (SSS), sphere-shielded

pillbox (SSP), and pillbox-shielded sphere (PSS). From this

figure one observes very similar effects for the three differ-

ent structures. There is at least one flatter part (“plateau”)

in every curve depicted in Fig. 4(a). In this part, the

frequency remains essentially independent of the size of

the shield and is very close to the resonance frequency of

the corresponding mode of the open resonator. The Q~

factor can be approximated by “l/tan 8 and it is much

smaller than the quality factors of ordinary metallic cavi-
ties. On the two sides of the plateau, the resonance fre-

quency and the quality factor variations follow those of

the dielectric-filled (left) and the empty (right) metallic

cavity, respectively, for the corresponding mode, as have

been observed for a cylinder-shielded pillbox [3] and a SSS

[2]. In Fig. 4 one can also find that the TEOI and Hll
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Fig. 4. Comparison of the resonance frequencies and quality factors of
different modes between a sphere-shielded sphere (SSS), a sphere-
shielded pillbox (SSP), and a pillbox-shielded sphere (PSS). (a) Reso-
nance frequencies. (b) Quality factors.

modes of the SSP and the TMOI and Hll modes of the PSS

degenerate to one another, respectively, for almost the

entire range of the radius, b, of the shield. This is related

to the fact that special pillboxes (length equal to diameter)

are used in the two cases; it is not a general feature.

The composite object inside the shield need not be

permeable; it can contain one or several conducting parts

(cf. [11] -[15]). As an example, we consider the somewhat

unusual shielded object provided by the earth itself with

the ionosphere as the shield. We model the earth by a

perfectly conducting spheroid of equatorial radius 6378 km
and polar radius 6356 km. The ionosphere is modeled by a

concentric perfectly conducting spherical shield of radius

6500 km. The first eight resonance frequencies computed

using the null-field method are ~. = 10.83 (TMOI), 18.31

(TMO,), 20.54 (TEOI)> 25.80 (TM03), 29.01 (TEOZ), 33.26

(TM,,), 37.28 (TE03), and 40.70 (TMO,) Hz. The zeros of

the hybrid modes deviate very little from those of the TE

and TM modes. The shift is within 2 percent, because the

object is almost a sphere. From the observation of the

peaks in a typical noise power spectrum recorded at La-

vangsdalen, these Schumann resonances (cf. [21]) have

average linear frequencies of 8, 14, 20.2, 25.7, 28.3, 32.5,

34, 37.3, and 41.7 Hz, respectively. The lack of precise
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Fig. 5. Comparison of the resonance frequencies and the quality factors

of two of the TE modes between an open and two shielded lossy
dielectric double disks. The measured values are reported in [4]. (a)
Resonance frequencies. (b) Quafity factors.

agreement, especially for the first two peaks, is not surpris-

ing, since the assumption of perfectly conducting walls is

very crude. However, the ~~ variation of the com-

puted resonance frequencies for each of the TE and TM

modes is quite striking.

A set of double dielectric pillbox structures, one open

case and two shielded cases with different sizes of the

shield, are considered and the resonance frequencies and Q

factors of the two lowest TE modes of each case are
computed and plotted in Fig. 5. Some measured results

from [4] have also been included in Fig. 5 for comparison.

The lower and the upper TE mode correspond to the TEOla

and the TEoIs+ 1 mode> respectively> Of a single pillbox
resonator (cf. [1]) for each case. The larger the separation

of the two pillboxes, the closer the resonance frequencies

of the two TE modes; thus the smaller the coupling

coefficient (cf., e.g., [4]) between the two resonators. For

the open case, the resonance frequencies of the two TE

modes approach the same limit as d increases, namely the

resonance frequency of the TE018 mode of a single pillbox

resonator. On the other hand, for the shielded cases, the

resonance frequencies increase again when the pillboxes
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TABLE I
DIRECT AND INVERSERESONANCERESULTSFORTHETEOII MODE

OFA SPHERICALRESONATORCONCENTRICALLYSEIIELDEDBY A
METALLIC SPHEREASSHOWNIN FIG. 2

I
Known Data of the TEOI I Mode

a (mm) b (mm) cl I fo (GHz) [ Q~
0.72 I 4.o I 36+i0.03056 — —

0.72

0.72

0.72

0.72

4.0

4.0
—

—
4.0

4.0

36+i0.03056

36+i0.03056

36+i0.03056

36+i0.03056

—

33.96

34.3

33.96

34.3

33.96

34.3

1260

1270

1260

1270

1260

1270

Reconstructed Data

Errors I Computed Results I -iErrors
—

0.0057,

170

0.005%

1%

0.005%

1?4

f,=33.9;6298, ~d=1256.18

a= O.71996

a= O.7126

b=uw

b=2.798

El=35.996+i0,03047

CI=35.239 +i0.02965

0.005 70

1 ?%

0.1894

30 7,

0.03 %

3 %

TABLE II
DIRECT AND INVERSERESONANCERESULTSFORTHETM ~11MODE

OFA SPHERICALRESONATORCONCENTRICALLYSHIELDEDBY A
METALLIC SPHEREASSHOWNIN FIG. 2

Known Data of the TMOII Mode

a (mm) b (mm) c1 fo (GHz)

0.72 4.0 36+i0.02847 —
— 4.0 36+i0.02847 31.63
— 4.0 36+i0.02847 32

0.72 — 36+i0.02847 31.63

0.72 — 36+i0.02847 32

0.72 4.0 — 31.63

0.72 4.0 — 31.6

Qd
—

137000

140000

137000

140000

137000

140000

I Reconstructed Data I

Errors Computed Results

– fo=31.631401, Qd=137014.

0.005% a=o.72030

1% a= O.6314

0.005% b=4.000z

1% b=3.948

0.005% Cl=36.346+i0.02866

1% &l=44.161+i0.02994 :1
Errors

—

0.005 %

12,3 %

0.005 %

1.3 ?%

0.95 ?4

22 ?%
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approach the ends of the shield and then form new pill- frequencies, we can reconstruct radii of the resonator, a,

boxes with double thickness together with their mirror

images in the perfectly conducting plane walls of the

shield.

IV. RESULTS FOR INVERSE PROBLEMS

From (12) one can see that every object, open or shielded,

has its intrinsic complex resonance frequencies, known as

the natural frequencies, in the electromagnetic spectrum,

and that the location of these frequencies in the complex

plane depends upon {G} and { P}, i.e., its size, shape, and

internal structure. The identification of the object (includ-

ing its shield, if any) by the natural frequencies is one of

the branches in the area of the inverse problem which has

been the subject of intense research. Some practical appli-

cations have been carried out in this branch, such as the

measurement of dielectric properties of low-loss materials

[22], the determination of the moisture content in single

soybean seeds [23], and accurately sizing the diameter of

glass fiber [18]. The application of equations (10)-(12) to

the inverse problems can be classified as the singularity

expansion method (cf. [24]–[26]) in the frequency domain.

Since there are many methods available for accurate mea-

surement of the resonance frequencies and corresponding

Q values of shielded or open composite objects (cf., e.g.,

[3] and its references) or, alternatively, for extraction of the
natural frequencies from the transient scattered signal in

the time domain (cf., e.g., [27]), we only give examples of

using the known complex frequencies to determine the

physical characteristics of the objects.

We first consider the simplest case, a concentric SSS as

shown in Fig. 2. From those computed complex resonance

and shield, b, the complex permittivity of the resonator, cl.

etc., within any prescribed accuracy. However, no such

“clean” data can be obtained in any actual measurements.

The errors in the results reconstructed from measured data

can be estimated by a factor

k. dp k. Ap
FP=—. —–=—. —

p akO p AkO ‘
pG{G}u{P}. (13)

If FP is found to be much bigger l,han unity, the computed

result is often not reliable since (he errors from the mea-

surement have been magnified. Thus, it is important to

choose a set of suitable modes for a concrete problem from

which a relatively smaller FP can be achieved. In Tables I

and H, reconstructed data for a concentric SSS are listed

for different parameters using the TEOII and the TMOII

mode, respectively. From these tables one observes that

the TEOII mode is not very appropriate for the reconstruc-

tion of b at b = 4 mm (F~=4 = 34), while TMOII (F~=4 =1)

works very well (cf. also Fig. 2). A similar situation (some-

times TEOII becomes a favorite mode) occurs when one

wants to reconstruct other parameters, such as a and Cl,

for a known b.

A similar procedure can also be applied to an inverse

problem for an open object, for which the zeros are

searched for with det { Q~ } (cf. [1]) instead of (10). Taking
an open dielectric pillbox (r = 5.25 mm, L = 4.6 mm) as

an example, we list the computed permittivities in Table

III by using the measured resonance frequencies and Q

values due to radiation for four different modes reported

by Kajfez et al. [28]. The relative permittivity, cl, of the

material used is assumed to be 38. The average relative
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TABLE III
COMPUTEDPERMITTIWTIES,cl, OFAN OPENDIELECTRICPILLBOX

wm~ RADIUS r = 5.25 MM, LENGTH L = 4.6 MM, AND PI = 1

FROM MEASURED RESONANCE FREQUENCIES AND Q
VALUES DUE TO RADIATION

Measured Data [28] Computed Results

modes fo (GHz) Q c1 Errors

TEo16 4.85 51 38.178 0.4770

TMI)]6 7.60 86 37.340 -1.74%

HEM*Z6 6.64 64 38.246 0.65%

HEM~~6 7.81 204 37.533 -1.23?4

Average — 37’.624 -0.46%

The know c1 of the material is 38.

error with respect to c1= 38 is 0.46 percent, which is very

close to the typical accuracy of measurement of the dielec-

tric constant (0.3 percent [3]), although the errors in the

measurement of the resonance frequencies and Q‘s have

not yet been taken into account.

As a last example, we consider a peanutlike layered

dielectric object with a dry shell (El= 9) and a wet prolate

spheroidal core shielded by a concentrically placed cylin-

drical metallic cavity, as illustrated in Fig. 6. The perrnit-

tivity of the core, c~, can be expressed by a linear function

of the water content, c (O < c < 1), in the core (cf., e.g.,

[29]):

62 = ‘dry ‘(twater -cdT).c (14)

where the permittivity of the dry core is chosen the same

as the shell (i.e., c&y = cl) and the dielectric constant of

water is e~ate~= 79+ i25 [29]. The resonance frequencies

and Q~ factors of the lowest TE mode were first computed

for various water contents, c = O -20 percent, to obtain

“clean data.” To imitate the measured resonance frequen-

cies and Q values, two different levels of uniformly dis-

tributed pseudorandom noise, corresponding to relative

errors of 1 percent and 5 percent, respectively, were added

to the real and imaginary parts of the complex clean data.

From the corrupted data, the complex permittivities and

the corresponding water content of the core were recon-

structed. The reconstructed points in Fig. 6(a) are all on

the top of the curve of the clean data, as expected, since

the linear relation (14) has been used. The reconstructions,

shown in Fig. 6, are only an illustration of the possibilities

of the present method. For more realistic problems (de-
termination of the water content in a single seed, melting

hailstone, etc.), more accurate models of the relation be-

tween the water content and the permittivity and more

appropriate resonant modes have to be used.

V. CONCLUDING REMARKS

In the present article an approach within the general

framework of the null-field method to the direct and

inverse resonance problems of shielded composite objects

is suggested, and implemented numerically for axially sym-

metric structures. Good convergence and reasonable agree-

ment with other computed and measured results are

achieved for both direct and inverse resonance problems.
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Fig. 6. Clean and reconstructed data of a cylinder-shielded lossy

peamrtlike object. The lossless shell of the object is bounded intemafly
by a spheroid and externally by the surface with a contour satisfying

r(d) = (a! COS29 + b! sin219)1/2, respectively. (a) Resonance frequen-

cies. (b) Permittivities.

Finally, we remark that in applications of the null-field

approach a basic criterion is that of stability of the results

(concerning, typically, surface-field expansion coefficients,

inverses of Q matrices, T matrix elements, zeros of det [Q],

etc.) as the truncation order (determined by 1~=) is in-

creased (cf., e.g., [1], [12]–[15]). Thus, the dependence of

the choice of l~u for all the quantities studied in the

present paper has been investigated and has, in all the

examples presented, been found to satisfy predetermined
limitations. Illustrations of the typical convergence behav-

ior for similar problems can be found in [1, table I].
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